33 research outputs found

    Facial emotion recognition using min-max similarity classifier

    Full text link
    Recognition of human emotions from the imaging templates is useful in a wide variety of human-computer interaction and intelligent systems applications. However, the automatic recognition of facial expressions using image template matching techniques suffer from the natural variability with facial features and recording conditions. In spite of the progress achieved in facial emotion recognition in recent years, the effective and computationally simple feature selection and classification technique for emotion recognition is still an open problem. In this paper, we propose an efficient and straightforward facial emotion recognition algorithm to reduce the problem of inter-class pixel mismatch during classification. The proposed method includes the application of pixel normalization to remove intensity offsets followed-up with a Min-Max metric in a nearest neighbor classifier that is capable of suppressing feature outliers. The results indicate an improvement of recognition performance from 92.85% to 98.57% for the proposed Min-Max classification method when tested on JAFFE database. The proposed emotion recognition technique outperforms the existing template matching methods

    Binary Weighted Memristive Analog Deep Neural Network for Near-Sensor Edge Processing

    Full text link
    The memristive crossbar aims to implement analog weighted neural network, however, the realistic implementation of such crossbar arrays is not possible due to limited switching states of memristive devices. In this work, we propose the design of an analog deep neural network with binary weight update through backpropagation algorithm using binary state memristive devices. We show that such networks can be successfully used for image processing task and has the advantage of lower power consumption and small on-chip area in comparison with digital counterparts. The proposed network was benchmarked for MNIST handwritten digits recognition achieving an accuracy of approximately 90%

    Real-time Analog Pixel-to-pixel Dynamic Frame Differencing with Memristive Sensing Circuits

    Full text link
    In this paper, we propose an analog pixel differencing circuit for differentiating pixels between frames directly from CMOS pixels. The analog information processing at sensor is a topic of growing appeal to develop edge AI devices. The proposed circuit is integrated into a pixel-parallel and pixel-column architectures. The proposed system is design using TSMC 180nm180nm CMOS technology. The power dissipation of the proposed circuit is 96.64mW96.64mW, and on-chip ares is 531.66μm2531.66 \mu m^2. The architectures are tested for moving object detection application.Comment: IEEE SENSORS 201
    corecore